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ABSTRACT 

Most of the material in Sections 4-5-6-8-11 has been published in [4]-[10]. 
We shall deal with the asymptotical behavior of the iterates of a Markov 
transition function. Our aim is to generalize the results about the "cyclic" 
convergence of the iterates of a Markov matrix. Throughout the paper 
functional analytic methods are used and not probabilistic arguments. The 
report is self contained, modulo standart results from functional analysis, 
except for the decomposition into conservative and dissipative parts. Also we 
assume the existence of an invariant ~r finite measure on the conservative part. 
This has been proved, under some restrictions, by several authors using 

probabilistic methods. 

1. Definitions and notation. Let (X, X,v) be a measure  space. By a measure  

we shall  mean  a finite posi t ive measure  unless otherwise men t ioned  (e.g. signed 

measure ,  tr finite posi t ive  measures  and  finitely addi t ive  measures) .  Let  P(x,A) 
be a M a r k o v  subt rans i t ion  funct ion on  it, i.e., a funct ion  on  X x E which is, 

for  each x ~ X a measure  o f  to ta l  mass  < 1 and,  for  each A E E a measurab le  

funct ion.  The subt rans i t ion  funct ion  induces an o p e r a t o r  on  bounde d  measur-  

ab le  funct ions  and  on  signed measures  by  

(L 1) (Pf) (x) = 

0.2) 0,P)(A)= 

Thus  i f  1Ao denotes  the character is t ic  funct ion  o f  A o 

a t  Xo then  

( P  lao ) (x) = P(x, Ao) 

f f(y)P(x, dy) 

f P(x, A) lt(dx) 

Z and  3xo the Di rac  measure  

(6xoP)(A) = P(x,o A). 

Equa t ion  1.2 will be occas iona l ly  used for  o" finite posi t ive measures  and  for  

f ini tely addi t ive  measures  too.  
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The two operators are related by 

(1.3) f (Pf)(x).(dx)= f f(x)(#P)(dx). 
The measure v is assumed to satisfy 

(1.4) vP ~, v 

(vP is absolutely continuous with respect to v). Hence if v(A) = 0 then P(x, A) = 0 
a.e.v. Equation 1.4. can be always achieved if one replaces v by Y~2-nvP n. 

The iterates of  P are defined inductively by 

(1.5) P~(x,A) = f Pn-k(x, dy)pk(y,A) 0 < k< n .  

This definition corresponds to the notion of  powers of  the operator P con- 

sidered either on bounded measurable functions or on signed measures. 

2. The operator P o n  L1 (X, ~ ,  v). Let us consider the action of  P on the 
signed measures which are absolutely continuous with respect to v (weaker than 

v). If  #-< v then d# =fdv where fGLt (X  , ~,,v) is the Radon Nikodym deri- 

vative of  # with respect to v. Let d#k =fkdV where fk(X) = f ( x )  if If(x)l k 
and fk(X) = 0 if If(x)[ > k. Then 

= f P(x,A)#k(dx) < k f P(x,A)dv. (#kP)(A) 

Thus if v(A) = 0 then (#~P) (A) = 0. Since lit ~ li in the norm of signed measures 
(total variation) it follows that 

f P(x,A)lik(dx)-, f P(x,A)li(dx). 

Therefore if li-< v then lip-< v, or P leaves the subspace, consisting of signed 
measures that are weaker than v, invariant. 
For this section only let us denote 

dliP 
(2.1) fP  = g iff whenever dli-'-fdv then g -  dv 

This can be written as: 

(2.2) f P = g  iff fA g(x)v(dx)= f P(x,A)f(x)v(dx). 

Note that P on Ll(v) is the restriction of 1.2 not of 1.1. Now the operator P 
on signed measures is a contraction operator (of norm =< 1) and maps positive 
measures to positive measures. Thus P on L1 (v) is a contraction and if f > 0 
a.e. v then f P  >= 0 a.e.v.  On the other hand we can not apply to P the classical 
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Ergodic Theorem since P 1 # 1 usually. Equality would mean that v is an invariant 
measure. This situation has been studied by the Chacon-Orenstein Theorem and 
related results. We shall cite only one result that will be used later: 

The spacce X is the disjoint union of its conservative part C and its dis- 
sipative part D. These sets satisfy: 

(2.3) I f  I~-,( v then ~ g P "  is tr finite on D. 

(2.4) I f #  -~ v then ] ~ P " ) ( A )  = ~ ,  unless ~,(pP")(A) = O, whenever A c C and 

v(A) > O. 

(2.5) P"I c = P" (x, C) = 1 c a.e. 

See [12 Proposition V.5.2]. 

3. Convergence on D. Let Dj be disjoint sets whose union is D such that 
~,,(vP")(D~) < ~ .  Such sets exist by Equation 2.3. 

THEOREM 1. I f #  "(V then lim,_.~ (#W) (Dj) = 0. 

Proof.  Let d # = f d v  where O < f e L l ( v ) .  Now j" ~,,P"(x,D~)v(dx)<oo 
hence ~2,P"(x, D j) < ~ a.e.v. Thus a.e. v f (x )P"(x ,  Dj),-,oo ~ 0 and the assertion 
follows by the Lebesgue Dominated Convergence Theorem since P"(x, Dj) < 1. 

Most of our report will be concerned with (kIP")(A) where A c C. For this 
we shall need some results on operators in Hilbert spaces and the assumption 
of existence of an invariant measure on C. 

4. Processes  with an invariant measure. In the rest of this report we shall 
assume the existence of an invariant measure. 

ASSUMPTION I. There exists a a finite measure 2 which is equivalent to the 
restriction of v to C, and 2P = 2. 

We shall not deal here with the problem of  finding such measure under suitable 
conditions. Let us just mention that this is done in 13] and additional references 
are given there. In what will follow it will be seen that this assumption is essential. 
Finally in [2] it is shown that if one assumes that 2P < 2 (subvinariance) then 
invariance follows. 

The purpose of this section is to establish that P is a contraction operator 
on Lp(C,Z,2) for every 1 < p ~ ~ .  This is well known and is given here just 
for completeness sake. 

We shall take real spaces though all the results are valid for complex spaces 
as well, see [7]. 
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Let f = 0 a.e. )l (hence a.e. v) then: 

I(Pf)(~)l =< (Plfl)(x) = lim P(min(lfl, k))(x ) 
k~co 

n o w  

[March 

P (min ( I f  I, k)) (x) = j" P(x, dy) min (1 f (y)  1, k) < k P(x, {y: f (y)  ~ 0}) = 0 

11 z ~  II = II x II iff T*T~ = ~. 

II x II = = < yx ,  Tx> = < T* Tx, x> Z II T* z ~  II I1 x II ~ II ~ I1 = 

Where (x, y)  denotes the inner product, thus equality holds in the Schwartz's 
inequality, this is possible only if T* Tx is proportional to x and it follows that 
T* Tx = x. Thus K is a subspace of H. Now if x ~ H then 

11 Z"Txl] = 11 Z"+'x]] --- Ilxll and II T*"rxll--11 T*n-l(T*rx)]] 
-- II r*"- Ix  II -- II x II 

by 5.2. Thus 

THEOREM 2. The subspace K in invariant under T and T* and T restricted 
to K is a unitary operator. Furthermore: 

(5.3) I f  x .1_ K then weaklim T"x = weaklim T*"x = 0. 

(5.1) 

Now 

(5.2) 

Because: 

a.e. by 1.4. 
Thus P operates on Loo(2) and if f(x)] -< M (we may drop the a.e. part by 

the above argument) then ](Pf)(x)] <= .[-P(x, dy)If(Y)] =< MP(x, C) = M. 
On the other hand if f = Y~cilA, where the sets Ai are measurable and con- 

tained in C then 

f I(P/)(x)lX(dx)<_ Zlc, I f P(x ,A , )2(dx)= ZIc,]X(A,). 

Since step functions are dense in LI (C,Z,2) it follows that ]l P II1 =< 1. 
Thus by Riesz Convexity Theorem the operator P, as defined by Equation 

1.1., is a contraction operator on Lp(C,Z,,I) for every 1 ~ p < oo. 

5. Some results on contractions in a Hilbert space. 

The next two theorems will deal with a contraction operators in a Hilbert space. 
Theorem 2 has been proved in [11] by an extensive use of the authors' Dilations 

Theory. We shall give an elementary proof of it. 
Let T be a conraction operator on the Hilbert space H. Define 

g = { x  il T"x II = II T*"x II = II x Ii n = 1 , 2 , - )  
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Proof. Only 5.3 requires a proof since the other parts follow from the pre- 
ceeding remarks. 

For every x e H 

(a) 

Also 

(b) 

II T*kTkT"x- T"x I['- -<- 211T x]l- 2Re(T*kTkT"x,T"x) 

= 2(11 r"xll = -  Ir r"+ x I1 ) - 'o .  
/1--+o0. 

11TI'T*kT"x - T"x II 2 < II T*kTkrn-kX - Tn-kx l[ 2 ~ O. 

Let x _1_ K and y = weaklim T"'x for some subsequence of the integers, nv Then 
from (a) and (b) T*~Tky = TkT*ky = y or y EK. But K ± is invariant under 
T and x belongs to it hence y e K  n K  -L = {0}. Since the Hilbert space H is 
weakly sequentially compact the sequence T~x itself converges weakly to zero. 
The result on T*'x follows by symmetry. 

THEOREM 3. Let T be a contraction operator on the Hilbert space H. Then 
weak lira T"x = 0 iffl im (T"x,x)  = O. 

Proof. Let x = u + v  where u E K  and v_l_K. Then (T"x , x )=(Tnu ,  u) 
+ (Tnv, v) and ( T % , v ) ~ O  always by Theorem 2. Now if w e a k l i m T " x = 0  
then clearly (T"x,x)  ~ O. Conversely if (T"x, x )  ~ 0 then (T"u, u) ~ 0 and it 
is enough to show that weak lim T"u = 0 since weak lim T~v = O. 

Now u E K and on K the operator T is unitary. As in the previous proof it 
is enough to show that if w e a k l i m T % = w  then w = 0 .  But (w, Tku) 
= limn,(T"'u, TkU)= limn, (Tn'-ku, u)= 0. On the other hand w is in the sub- 
space generated by T~u and so must be zero. 

6. The structure of K .  Let us return to P acting on L2(C,~, ,~ ) .  Thus from 
now on we denote 

(6.1) K =  {f:feL2(2), HP"f]I = ]lP.,fH = [Ifl] n =  1,2,. . .}. 

Notice that we do not have an explicit expression for P* the Lz adjoint to P.  
Put 

(6.2) ~1 = the a-field generated by sets A with IA~K.  

TrlEOREM 4. K = L2(C, ZI,~, ) equivalently f e K  iff feL2(C,£,A) and is Z 1 
measurable. 

Proof. We shall divide the proof into several steps. 

(a) I f f ~ K  so does Ill: 
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I ~ f l  <= P' I f l  since e is order preserving hence HfH = I1P~f]] < II P~Ifl II =< Ilfll 
and equality holds. In order to apply this to P* we only need to show that P* 
is order Ipreserving as well. Assume, to the contrary, that for some g > 0 
P*g < 0 on a set A of positive measure. Take A to have finite ;t measure and 
0 > ~AP*gd). = f. gPla d2 > 0 a contradiction. 

(b) If  f and g belong to K so do max(f, g) and min(fg):  

max(f,g) = ½( I f -  gl + f +  g) 

min(f,g) = ½ ( f +  g -  I f -  g[). 

(c) If  A and B belong to El ,  so do A n B  and A L)B: lamB= max(1A, ln), 
lamb = min (1A,1B). 

(d) If  0 < f ~ K  and c is a positive constant then m i n ( f , c ) ~ K :  
Notice first that if 0 < g < c then (Pg)(x) = .f g(y)P(x, dy)< c. Also P*g ~_ c 

a.e. for otherwise if P*g > c on a set A of positive finite 2 measure then 

c2(A) < fA P*gd2 = f Z c f P(x,A)2(dx)  = c2(A). 

Also 

Thus 

Therefore 

Hence 

VkP*k(min (f, c)) < pkp .k f  = f 

p*kPk(min(f,c) < e*kpkf = f 

/#P*k(min (f, c)) < c, P*k/C'(min(f, c)) < c. 

/~P*k(min(f, c)) < min(f,  c), P*kP~(min(f, c)) < rain(f, c). 

p .kpk( f  _ min(f, c)) = f -  P*kp~(min(f, c)) >= f - min(f, c) 

p k p , k ( f _  rain(f, c)) _>- f -  rain(f, c) 

but II p,,Pkll--- 1 and II eke* ll--- 1 w le inequality would mean that these 
operators have norm greater than one. 

(e) I f f ~ K  then the characteristic function of  {x:f(x)  > c > 0} belongs to K 

Let f÷ = max (f, 0) ~ K.  
Let g = c - l m i n ( f + , c ) ~ K .  Then 0 < g ~ l  and put h e = e - l m i n ( e g , f +  

- m i n ( f + , c ) )  for every 8 > 0. Now 0 < he < 1 and h, e K .  Also if f+(x) > c + e 
then eg(x) < f+(x) - c and ha(x) = g(x) but f÷(x)  > c implies that g(x) --- 1. 
Thus if f+(x) > c + e then he(x) = 1. On the other hand if f+(x) ~ c then 
jr+ - rain(f+, c) = 0 and he(x) = O. 
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Therefore as ~ ~ 0 ha tends to l{x,s(x)> d. 
(f) Let us now prove the theorem by contradiction: 
I f f e K  and is orthogonal to Y'x then for every positive c f{x,i(~)>c}fd2 = O, 

by part e, hence 2{x:f(x)>c} = 0  and f+ = 0  a.e. Apply this to - f t o  get 
that f = 0 a.e. 

Tx-mOR~M 5. I rA e ~,a and is of finite 2 measure then Pla  and P*la (=  P - a l a  
since on K P is unitary) are both characteristic functions of sets in Zt. 

Proof, Let us prove the theorem for P1 a since the proof for P*la is identical. 
Put f =  P la  then 0 < f <  1 (see part d of the preceding proof). Let BeZx be 
such that on B 0 < f ( x ) <  1 ( f  is ~l-measurable) put g =  (1--f)lB. Thus 
0 < g < l ,  g + f < l  and g~K.  Hence P * ( f + g ) < l  while P * f = l  a. There- 
fore (P*g)(x)=O if x ~ A  or O=(la,  P * g ) = ( P * f , P * g ) = ( f , g  ) but on B 
both f and g are positive which implies that f = 0 or f = 1 almost everywhere. 

T h e  last two theorems can be summarized: The space K is an Lz space on 
which P acts as a measure preserving transformation. 

7. The non atomic part of Z 1. The atoms of ~ ,  are mapped into atoms by 
P and p-1.  Let Y-2 be the purely non atomic part of Y.a. Then P and P-~ are 
measure preserving automorphisms of  E2, For every A e Z2 P"(x,A) assumes 
only the values zero or one a.e. On ~ introduce the decomposition 

(7.1) P"(x, ") = Q.(x," ) + R.(x, ") 

Q.(, ")  -< 2 R.(x, • ) _I_ 2. 

We shalluse here the argument of [3 Theorem 1]. If  A ~ Y~2 then A = [..J~"= 1A j, 
where 2(Aj,.)=½"2(A)and Aj,.eE2 and each Ak,.+~ is contained in some 
Aj,. ,  since ~2 is non atomic. Now for a fixed m pm(x, Ay,.)is either zeto 
or one a.e. Disregarding the exceptional set P'(x, Aj,.)= 0 except possibly for 
one value o f j .  Thus Qm(X, Aj,.) vanishes too for every value o f j  except, at most 
one. Thus outside of a set of measure zero 

Q,.(x, A) = Qm(x, Ai(~ ),.) 

and the sets Aj(x),. form a decreasing sequence and 2(Aj(x),.)~ O. Because 
Qm(x, • ) -< 2 it follows that Qm(x, A) = 0. In conclusion: 

THEOREM 6. I f  A ~ 2  and 0 < i t ( A ) < o o  then: 

(7.2) 2{x:Qm(x,A) > 0} = 0 for every m, 

(7.3) it{X:Rk(X,A ) = 1} ~ 0 for every k. 

Proof. It is enough to mention that since Qk(X,A)= 0 a.e.Rk(x, A)= P~(x,A) 
a.e. and pk(x,A)= (Pla)(x) from which 6.3. follows by Theorem 5. 
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It should be noted that in 13] the negation of  7.2. was shown to be sufficient 
for the existence of  an invariant measure. Of  course there 2 in 7.2. is replaced 
by v but as they are equivalent, on C,  it does not matter. 

8. Assume Z1 atomic. In the rest of  this paper we shall assume 

ASSUMPTION II. The set Y'I is atomic. 

By Theorem 6 it is enough to assume that there are no sets, A, of  arbitrary 
small measure such that v{Qm(x,A ) > 0} = 0 and v{Rk(x,A ) = 1} # 0 for every 
m and k. Another way of  putting it is to say that the process does not contain 
a deterministic subprocess. Where a subprocess is obtained by taking a subfield 
of Y. and is called deterministic if the transition function and its iterates assume 
the values zero-one a.e. From Theorem 4 follows that ~1 is generated by sets 
of  finite measure and since 2 is a finite we have Y~I = {W~}l°°--a • For  each i the 
sets whose characteristic functions are P ' I  n,, are atoms of Y~. Let us denote these 

atoms by P~W~. 

TtmORPM 7. For every atom W there exists an integer k such that PtW = W. 

Proof. I f  P#W are not disjoint then i f ' W =  Prow for some m < n but since 

P is a unitary operator on Lz(C,Y-1,; 0 P*-mw = W. 
I f  P"Ware all disjoint and /z = restriction of  2 to W then Y{/~P")(W)=/I(W) 

= ;t(W) which contradicts 2.4. 
{W k3 PW u ... u P  k- W} is called a cycle. The integer k is called the order of W. 

Also define 

(8.1) C 1 = union of all atoms. 

(8.2) C2 = C - C 1  = C -  U Y~I. 

9. The limit theorem for measures weaker than v. Let us s tudy/JP" where 

#is a measure on C weaker than v and hence/z -<2. 

TtmOR~M 8. Let #-< 2 and A a set of finite 2 measure. 
(a) I f  A c C2 then lim,_,~(#P")(A) -- 0 
(b) I f  A c W where W is an atom of order k then 

l i m  = 
n--~ 00 

Proof. Let d # = f d 2  where 0_-<f~LI(C,E,2) .  Let us first prove the result 
under the additional assumption that f e  L2(C,E, 4). Since every function in Li  
can be approximated, in the L 1 norm, by L2 functions and P is a contraction 

operator on L1 our result will follow. 
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If  A is disjoint to Z~, then la is orthogonal to K and by Theorem 4 

(U~') (A) = ( ~ h , f )  --} 0 

Let g = 1a -- 2(W)-12(A)lw then gis supported in Whence is orthogonal 
to any other atom of Zt .  On the other hand 

(g, lw)  = 2(A N B 0 - 2(W)- * 2(A)2(W) = 2(14 ~ I41) - 2(A) 

hut A c W hence (g, 1 w) = 0. Thus g is orthogonal to K and 

(# /~+ ' ) (A)  = f l~+'(x,A)f(x)2(dx)= ( / ~ + ' l a , f )  

= (p.k +,g,f)  + 2(W) - t  2(A) (p.k +,1 w,f)  

The first term tends to zero by Theorem 3 while the second term is equal to 
( i f l  w , f )  = Y If(  x, A)f(x)2(dx) = (#P') (A). 

TrmOREM 9. Let # -< v and I~(C) = O. Let A be a set of finite ~ measure. 
(a) I f  A c C2 then lim (#P") (A) = 0. 
(b) I f  A c W, where W is an atom of order k, then the limit of 

(# /~+ ' ) (A)  exists for every 0 < r < k. 

Proof. Let % be the restriction of #P" to D and a, its restriction to C. Thus 
#P" = v. + a.  and #/~+J = 7.+; + a.+ 1 = TnP j + a.P 1. Now 

(a"PJ)(D) = fc PJ(x,D)a.(dx < fc(1 - = 0 since P (x,e) lc a.e. 

Thusonly ~.PJ can contribute to ~.+ ~and %+ l <= ~.PJ. Thus %+ j( D) < f PJ(x,D)T.(dx) 

• .(X) = f.(D). Also 

• .+j(D) ~ IoPl(x,D)~.(dx)-- £ ( 1  - Pl(x, C))%(dx)--- %(D) -  (%PJ)(C) 
t 

and 

(TnPJ)(C) _~ "tn(D ) - Tn+j(D ) 

The right-hand side is monotonically decreasing and for every e > 0 there exists 
an N such that (,.PJ)(C) < e whenever n >= N.  Therefore 

(a) (/~P~) (A) -- (XN P~- N) (A) + (o.ff' - N) (A) 

the first term is smaller than e since A ~ C and the second term tends to zero 
as n --* Qo by part (a). of  Theorem 8. 

(b) [ (/~P~+')(A) - (pP~+' )  (A)[ _~ 

(~kp( . -  m~ + ,) (A) + (~s* p(m- m~ + ,) (A) + [ (askP ('- N)k + ,) ( A) - (astP ('~- m~ +,) (A) ] 
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The first two terms are smaller than 8 since A c C and the third term tends to 
zero as n,m ~ oo by part (b) of Theorem 8. 

10. Existence of invariant measures weaker than v. 

Let # = #P and # -< v. 
Then for each Dj 

I~(Dj) = (#Pn)(Dj) ~ 0 by Theorem 1. 
n--P O0 

Also for every set A in C2 of finite 2 measure #(A) = (#P") (A) ~ 0 by Theorem 9 
part (b). Thus # is supported by C1. If A ~ W where W is an atom of order k 
then 

#(W) 2(A). #(A) = (#p,k + ~) (A) -~ 2(W) -1 (l~U) (W)2(A) - 2(W) 

Now the multiplicative constant #(W)/2(W)is  the same on the cycle of W by 
invariance of # and 2, hence on this cycle # is proportional to 2. 

Conversely every such measure is clearly invariant. 
Note that our method fails if we wish to consider a finite invariant measures. 

11. The limit theorem. To obtain the asymptotical behavior of pP" for 
every # we shall need a stronger assumption. Throughout the rest of the paper 
we shall assume. 

ASSUMPTION III. There exists an integer d such that i f  v(A)= 0 then 
sup {Pa(x, A) : x e X}  < 1. 

Let us compare this with Theorem 6" 
For every x 

Ra(x, X)  = Ra(x, Ax) with v(Ax) = 0 

Thus Rd(x,X) = Pd(X,Ax) < 1 and by Theorem 6 the collection Z1 is atomic. 

Thus Assumption III implies Assumption II. 
Also this Assumption is weaker than the classical Doeblin Condition (see [1 

p. 192 hypothesis D]). There one assumes the conclusion whenever v(A)< e 
for some fixed e > 0, also uniformity in the sets A is assumed in Doeblin Con- 
dition. 

THEOREM 10. Let # be a given measure and ttP n = Tn + an where zn .<v 
and an .1_ v then liman(X) = 0. 

Proof. Since zn+l + trn+ ~ = z , P  + trnP and znP-< v by Section 2, only trnP 
contributes to o'n+~ and trn+ ~ < trnP. In particular 

trn+ I(X) ___ (o'nP) (X) = f P(x, X)trn(dx ) ~_ an(X). 
d 
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Let us assume, to the contrary, that lim a.(X) # 0. Since a .  are functionals over 
the space of bounded measurable functions and the sequence is bounded there 

exists a weak * limit point, a ,  to a.  where a is a positive finitely additive measure. 
Let Ye Z be such that  v(Y) = 0 and a . ( X -  Y ) =  0. Given e > 0 choose n so 

that 

then 

[ (aP ~) (Y) - ( a y )  (v) [ < 

(aPd) (Y) > (a. /~)  (Y) - e > a.+d(Y ) -- e > lim am(X ) - ¢ = a(X) - 8. 

Thus 

< (aP d) (r)  = f Pa(x, Y) a(dx) <= sup {Pa(x, Y): x e X} a(X) < a(X) a( X)  , 

By Assumption III .  

THEOREM 11. Let # be a given measure. Let A be a set of finite 2 measure. 
(a) lim (/LW)(Dj)---0 

n---~ oo 

(b) I f  A c C2 then lim (#P")(A) = O. 
(c) I f  A c W where W is an atom of order k then the limit of(#P"~+r)(A) 

exists for every 0 <__ r < k. 

Proof. Let e > 0 be given and choose N so that #pN= aN + zN as in Theorem 

10 and a.(X) < ~ n > N .  

(a) ((#pN)pr,) (D j) = (aNP m) (D j) + (zuP") (D j) 

the first term is smaller than aN(X) < e while the second term tends to zero when 
m-~  ~ by Theorem 1. 

(b) Again choose as in (a) and 

((~pN)p.) (A) = (aNP')(A) + (TNP') (A) 

The first term is bounded by aN(X) and the second tends to zero when m ~ oo 
by Theorem 9 part  (a) and Theorem 8 part  (a). 

(c) Let N be as in part  (a) Then 

[ (liP "k + ") (A) - (ItP "k + ") (A) [ <= (aNkP ("- N)k +, ) (A) + 

(aN/P (m-N)/+r) (A) + [ ( Z N k P ( n - N ) k + r ) ) ( a )  - -  (zNiP (m-N)/+r) (A)] 

The sum of the first two terms is smaller than 2a~ck(X ) < 2e while the third term 
tends to zero as n, m ~ oo by Theorems 8-9 part  b. 

I f  we choose # = 6x we get: 



22 S. R. FOGUEL 

COROLLARY. For every 

x ~ X and A with 2(A) < oo: 

(a) lim P~(x, D j ) = O .  
n--~00 

(b)  I f  A c C2 then lira P"(x,A) = 0 .  

(c) I f  A c W where W is an atom o f  order k then the l imi t  o f  P ~ + ' ( x , A )  

exists f o r  every 0 < r < k .  

P~MARK. Let # be an invariant measure. Then # = #P" and  by Theorem 10 

# -< v. Thus  all the result o f  Section 10 are valid. 
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